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THE CFL CONDITION FOR SPECTRAL APPROXIMATIONS 
TO HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS 

DAVID GOTTLIEB AND EITAN TADMOR 

ABSTRACT. We study the stability of spectral approximations to scalar hyper- 
bolic initial-boundary value problems with variable coefficients. Time is dis- 
cretized by explicit multi-level or Runge-Kutta methods of order < 3 (for- 
ward Euler time-differencing is included), and we study spatial discretizations 
by spectral and pseudospectral approximations associated with the general fam- 
ily of Jacobi polynomials. We prove that these fully explicit spectral approxi- 
mations are stable provided their time step, At, is restricted by the CFL-like 
condition At < Const N 2, where N equals the spatial number of degrees 
of freedom. We give two independent proofs of this result, depending on two 
different choices of appropriate L -weighted norms. In both approaches, the 
proofs hinge on a certain inverse inequality interesting for its own sake. Our re- 
sult confirms the commonly held belief that the above CFL stability restriction, 
which is extensively used in practical implementations, guarantees the stabil- 
ity (and hence the convergence) of fully-explicit spectral approximations in the 
nonperiodic case. 

1. INTRODUCTION 

We are concerned here with fully discrete spectral and pseudospectral ap- 
proximations to scalar hyperbolic equations. In this context, the spectral (and, 
respectively, the pseudospectral) approximations consist of truncation (and, re- 
spectively, collocation) of N-term spatial expansions, which are expressed in 
terms of general Jacobi polynomials; Chebyshev and Legendre expansions are 
the ones most frequently found in practice. In this paper we prove that such 
N-term approximations are stable, provided their time step, At, fulfills the 
CFL-like condition At < Const * N-2 . To clarify the origin of such a CFL-like 
condition in our case, we recall that the Jacobi polynomials are in fact the eigen- 
functions of second-order singular Sturm-Liouville problems. Our arguments 
show that the main reason for the above CFL limitation is the O(N 2) growth 
of the Nth eigenvalue associated with these Sturm-Liouville problems. 
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The paper is organized as follows. Section 2 includes a brief summary on the 
properties of Jacobi polynomials (and their quadrature rules), which are used 
throughout the paper. In ?3 we state our main stability theorems for forward 
Euler time-differencing and (pseudo)spectral spatial differencing, for constant- 
coefficient equations with homogeneous boundary conditions. Section 4 extends 
our stability results to the inhomogeneous case. In ? 5 we discuss multi-level and 
Runge-Kutta time-differencing. Finally, in ?6 we show how to extend our results 
in the presence of (positive) variable coefficients. 

2. VERY SHORT GUIDE TO JACOBI POLYNOMIALS 

Jacobi polynomials, Pka, P, are the eigenfunctions of the singular Sturm- 
Liouville problem 

(2.la) ((1 - x )w(x)Pk ) (x)) + kW(X)P( ( =0 -1 <x< 1, 

with corresponding eigenvalues Ak' 

(2. 1b) Ak =Ak (as k) (k +a + 9+1) 

Different families of Jacobi polynomials are associated with different weight 
functions w (x), 

(2. 1 c) w(x) =_ w(x; a, ,)=( 1 - x)'( 1 + x)f, a, ,B>-1. 

In the sequel we shall frequently use several properties of the Jacobi polynomi- 
als. A brief summary of these properties is given below (consult, e.g., [13]). We 
start with the well-known 

Property 1 (Orthogonality). We have 

(2.2) (P (a, fl)pa )w(x) = j $ k. 

The derivatives of Jacobi polynomials are also Jacobi polynomials. This is 
evident from the following property, which shows that {p(a }k>O are orthog- 
onal with respect to the weight (1 - X2)W(X) w(x; a + 1,+ 1): 

(2.3) p(ajf) = Constk p Const l(k+a+fl+2) k+1 kaik ) Cntkfl=(k+,/32) 

Property 2 (Orthogonality of derivatives). We have 

(2.4) (P(af) (a, '())a=0, j# k 

(2.5) ~ lp(a' 2 (a, f) 2 (2. 5) [l 11k II(1_x2)W(x) = 'kIk llw(x) . 

Indeed, equalities (2.4) and (2.5) follow from integration by parts of (2.1) 
against PJ( ' ? (x). 
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Let rN denote the space of algebraic polynomials with degree < N. A useful 
consequence of the last two properties is provided by 

Lemma 2.1. (Inverse inequality). For all P E 7rN we have 

(2.6) lIP II(l_X2)w0(X) < ANWII1IP((X) P E 7rN 

Here, c(x) stands for an arbitrary w(x; a, /3)-weight, and AN = AN(a, /) is 
the corresponding Nth eigenvalue. 

Remarks. 1. Inequality (2.6) can be viewed as the algebraic analogue of the 
trigonometric inverse inequality, 

(2.7a) IIP IIL2[1_7. ., rl < NIIpIIL2[1. ,r ,], 
p = any trigonometric polynomial of order N. 

This should be contrasted with a similar L -inverse inequality for algebraic 

polynomials, where there is a loss of an N -factor for each derivative [3], 

IIP 1IL2[_., 1] < Const. N IIP|1L2[_ 1 1] 

p = any algebraic polynomial of degree N, 

and this estimate, (2.7b), is sharp in view of, e.g., the 7rN-polynomial PN(X) = 

k=O p(-/2 -1x2)(X) . Thus, the use of the differently weighted L2-norms in the 
algebraic case, (2.6), is essential in order to retain a loss of only a NN N- 

factor for each derivative. 
2. The inverse inequality (2.6) can be viewed as an L -weighted version of 

Bernstein's inequality 

||(1 -x ) p (X)IIL'[.-. 11] < NIIp(x)IILo[ -1 1] P EN 

Standard interpolation arguments between this L?-type estimate and the L 2- 

type estimate (2.6) yield for q > 2 

(2.7c) ||(1 - X)P (X)IILg7(x;,fl)[-l,l] 

< iN(a, /3) IIP(X)lLq (X; )[-1,l]' P E 7N 

Similar weighted Lq-type estimates apply to higher derivatives. 

Proof of Lemma 2.1. Given p(x) in UN, we will use its Jacobi expansion, 

p(x) = EN0 akP(a '4)(x) and p (x) = EN tQakP, '4)(x). Starting with the 
left-hand side of (2.6) and using (2.4), (2.5), and (2.2) in this order, we obtain 

N N 

(LHS) = akk l(l_X2)W(x) = AkakllPak llw(x) < (RHS) El 
k=O k=O 
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We note in passing that Lemma 2.1 can be generalized to higher derivatives: 
successive application of (2.6) with co(x) = w(x; a, ,6) yields 

k-i 
I p(k) (X 2 + + j.lpX12 

(2.8) j/P (x)I_(l.X2)kW(X) < ( + fi A ) IIP(x)IIW(X), P E UN 
j=0 

This leads us to a "natural" definition of nonperiodic Sobolev spaces equipped 
with finite Hs (X)-norm, where 

(2.9) HIPsII(,) = S IIP 1l(,_X2)kW(X) 

With this in mind, we now recover a sharp inverse inequality familiar from the 
trigonometric setup, 

(2.10) IIPIIHs <ConstsNsllpllw(x) Const 1 +s/N, P E 7N' 

In the above discussion we can replace integrals by discrete summations, in 
view of the well-known 

Property 3 (Gauss quadrature rule). Let {qN(x)}IN>O be a family of 7N-poly- 

nomials orthogonal with respect to the co(x)-weighted L2 inner product. Let 
-1< x1 < X2 < . < XN < 1 be the N zeros of qN(x). Then there exist 
positive weights, {cojN} 1, such that for all P E 7r2N-1 we have 

1 ~~~N 
(2.11) f w(x)p(x)dx = jp(xj) P E N- E ~~~ 2N- I 

j=1 

Remark. To compute the Gauss weights, we set p(x) = qN(x)/(x - xk) in 
(2.11). Since p(xj) = 0, j 5$ k, (2.11) yields 

_ 1 1 
qlX (2.12) (Dk = co(x)x dx, 1 < k < N. 

qN'(Xk) Ii XXk 

Examples. 1. Gauss-Jacobi quadrature rule. By Property 1, (2.11) applies to 

IP(" 
fl 
I)N>1 with co(x) = w(x; a, ,B). Hence, there exist {w1 = W1G(ai, i)},N 

such that 
~. 1 N 

(2.13) ] w(x)p(x) dx = wjp(xj) for all p e 72N- I 
j=1 

Remark. The Gauss-Jacobi quadrature rule (2.13) can be used as a highly accu- 
rate quadrature rule for general smooth, not necessarily polynomial functions. 
The error incurred is governed by [4, p. 75] 

1 ~~N 
( W (X)f(x) - 5wjf(xj) = Const . f(2N) (0) 
(2.14) ~~~~j=1 

Const>0, 101<1. 

2. Gauss-Lobatto-Jacobi quadrature rule. By Property 2, (2.11) applies to 

P(a+ }N>0 with co(x) = (1 - x 2)w(x; a, /3), and therefore, there exist 
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w= wG(a + 1, ,6 + l)}I1 such that 

(2.15) ] X(l -x2)w(x)r(x) dx = wir(x1) for all r E 7r2N-l. 

j=l 

This is in fact a special case of the Gauss-Lobatto-Jacobi quadrature rule which 

is exact for all p E 72N+I* Indeed, for all such p's we have p(x) = 

(l -x2 )r(x)+l(x) with r(x) in 72N-1 and a linear 1(x) = p(- 1) x+p(1) I+. 
By (2.15), 

1 ~~~N1 
w(x)p (x) dx = N w r(xj) + w(x)l(x) 

j=1 

N ,lN 

=z E 'tWj2P(xj)+]W(X)l(X)-Z i2l(Xi) 
X I+XIII. 

Thus, we have 
N L W. G 

I = EW p(xj) wjL j 2 2wj (a + I, f + 1), 
j=1 ix 1 

and the two expressions, II + III, amount to a linear combination of p(- 1) 
and p(l), 

II+ ~ II =wpx)+N+IP(XN+I) xO- I x < ..< XN < 1-XN+1 - 

Hence, there exist {wj = L )}j+1 such that 

I N+1 

(2.16) ].w(x)P(x)dx = E wjp(xj) for allp E 72N+1 o 
j=0 

Finally, we shall need some information on the behavior of the collocation 
points which appear on the right of (2.13) and (2.16). To this end, we quote 
[13, Theorem 8.1.2] as 

Property 4 (Distribution of zeros). If xj = cos Oj is the jth zero of Pz(7 `) (x), 
then for fixed j, NO1 is asymptotically equal to the jth zero of the Bessel 
function of order a, and hence 

2 .2 - 1-x. = sin 2 Const. N2 
(2.17a) J O t? 

for je J={1 < j< jo,N- jo1 < jN}. 

Thus, the zeros of PD(r "(x) accumulate within O(N-2)-neighborhoods of 
{-1, +1}. For example, more concrete estimates, e.g., [13, Theorem 6.21.2], 
yield the upper bound 

(2.17b) I -xj1 - 2N+ 1<j<N, a, Asp--,E 2 
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3. FORWARD EULER WITH HOMOGENEOUS BOUNDARY CONDITIONS 

We start with the scalar constant-coefficient hyperbolic equation, 

(3.1) Ut = aux , (x,~ t) E [- 1, 1 ] x [O , xo), a > O,~ 

which is augmented with homogeneous conditions at the inflow boundary, 

(3.2) u(l, t) = O, t > O. 
To approximate (3.1), we use forward Euler time-differencing on the left, and 
either spectral or pseudospectral differencing on the right. Thus, we seek a 
temporal sequence of spatial UN-polynomials, vm = VN(XI tm = mAt), such 
that 

(3.3a) vN(X, tm + At) = VN(X, tm) + At * av (x, tm) + At * T(tm)qN(x). 
Here, qN(X) is a 7EN-polynomial which characterizes the specific (pseudo)spec- 
tral method we employ, and z = T(tm) is a free scalar multiplier to be deter- 
mined by the boundary constraint 

(3.3b) VN(X = 1, t) = O. 

We shall study the spectral tau methods [8, 2] associated with Jacobi polyno- 
mials P(a7'(x), , ,E (-1, 1), 

VNy(X, tm + At) = VN(x, tm) + At * av'(x, t) + At * T(tm)qN(x), 

N (xx) 
and the pseudospectral Jacobi methods [5, 2], which are collocated at the interior 
extrema of P (a+), ,f,B E (-1, 0), i.e., 

VN(X, tm + At) = vN(x, tm) + At av(x, t) + At T(tm)q(x), 

(3.5) N N)= (X)~x) 

Remark. These two families of spectral and pseudospectral Jacobi methods are 
closely related since P(e+, (x) is a scalar multiple of pk+lf+ )(x) (consult N+1N 
(2.3)). We will not discuss here a different alternative to (3.5), where one collo- 
cates at the interior extrema of'PN 

\ 
)(x) together with the downstream outflow 

boundary, so that 

(3.6) qN(x) = (1 + x)P' (x). 
Let -1 < x1 < ... < XN < 1 be the N distinct zeros of the forcing 

polynomial qN(X) . The spectral approximation (3.3a) restricted to these points 
reads 

(3.7a) VN(Xj, t ) = VN(Xj, tm) +At * av>(xj, tm), 1 < j < NN 

and is augmented with the homogeneous boundary conditions 

(3.7b) VN(l, t0) = O. 

Equations (3.7a), (3.7b) furnish a complete equivalent formulation of the spec- 
tral approximation (3.3a), (3.3b). An essential ingredient in a stability theory 
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of such approximations lies in the choice of appropriate L 2-weighted norms 

N 

(3.8) IIf(x)IIl = (f(X), f(x)), (f(x) , g(x)) = Ecojf(xj)g(xj). 
j=l 

We make 

Definition 3.1 (Stability). The approximation (3.7a), (3.7b) is stable if there 
exist discrete weights, {co, > 0}1N, and a constant 'o independent of N, 
such that 

(3.9) IIVN(*, t)llw( < Const-e ?lt VN('* ?) Il,o 

The approximation (3.7a), (3.7b) is strongly stable if (3.9) holds with Const = 1 
and 10 < 0, i.e., if 

(3.10) IIVN(Q, t)jjll < IIVN(.V , Il1o 

We recall that in the Jacobi-type spectral approximations (3.4) and (3.5), the 
nodes {Xj}Nl are the zeros of Jacobi polynomials associated with the Gauss 
and Gauss-Lobatto quadrature rules. We use 

(3.11) Axmin = min(l +x,, 1 -xN) 

to measure the minimal grid size associated with these Gauss nodes. Our choice 
of discrete weights {wco}j'N1 for the stability of the spectral and pseudospectral 
Jacobi methods (3.4), (3.5) will be specified later on; these weights are related 
(but not equal) to the corresponding Gauss weights {w }j=LN indicated earlier. 

With this in mind, we have 

Theorem 3.1 (Stability of the spectral and pseudospectral Jacobi methods). Con- 
sider the spectral approximations (3.7a), (3.7b), associated with the Jacobi tau 
method (3.4), or the pseudospectral Jacobi method (3.5). There exists a positive 
constant o 10(a, ,) > 0 independent of N such that if the following CFL 
condition holds: 

(3.12) At(aG+ 2 1o) \N-IAxmin 

then the approximation (3.7a), (3.7b) is strongly stable, and the following esti- 
mate is fulfilled: 

(3.13) iVN(,5 t)llc, < e oat 
|VN('5 ?)||ico 

Notes. 1. The choice of L 2-weighted norms. Theorem 3.1 deals with the stability 
of both the spectral tau methods associated with Jacobi polynomials P(7 ") (x), 
a, Ei E (-1, 1), and the closely related pseudospectral methods associated with 
p(a fl) (x), a, ,E E (-1, 0) . In each case we give two different stability proofs, N+a 
which are based on two different choices of discrete L 2-weighted norms; these 
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-discrete weights {coN}> are given by 

1+X. N 
(3.14a) wo1 = 1- j W Wj},= = Gauss-Jacobi weights in (2.1 3), 

(3.1 4b) wj = (1 + xj)wj, {wj}j I = (interior) Gauss-Lobatto-Jacobi 

weights in (2.16). 

2. The CFL condition. The CFL condition (3.12) places an O(N 2) stability 
restriction on the time step At, and this stability restriction involves two factors. 
First, since we expand our solution in terms of the eigenfunctions of the Sturm- 
Liouville problem (2.1), the CFL condition involves the corresponding (N- i )st 
eigenvalue 

(3.15a) AN-1 =-AN-1(a 3 < (N+ 1)2 a, flE (-I1, 1). 

Second, the spectral Jacobi approximation (3.7a) is collocated at Gauss nodes, 
which accumulate within O(N ) neighborhoods near the boundaries, i.e., by 
(2.17a), 

1 2 
(3.15b) < Const N2 

min 

Thus, in view of (3.15a), (3.15b), the CFL condition (3.12) boils down to 

(3.16) At * aN2 < Const fl. 

In particular, for the practical range of parameters, a, ,B E [- 2] (2.17b) 
implies that Const, l2(a 

3. The choice of a stability norm. The stability statement asserted in Theorem 
3.1 is formulated in terms of discrete seminorms, 11 * 1.,, which are co-weighted 
by either (3.14a) or (3.14b). We note that 11 11,, are in fact well defined norms 
on the space of 7rN-polynomials satisfying the vanishing boundary condition 
(3.7b), i.e., corresponding to (3.14a) or (3.14b) we have in view of (2.14), 

(3.17a) ||VN(,5 0)|co > | W(X) 1 XVA(X , t) dx , VNO 5 t) = 0, 

and in view of (2.16), 

(3.17b) IIVN('5 0)lC1.= W(X)(1 + N)V(x , t) dx , VN( 1, t) =O 

Moreover, in view of (3.15b), one may convert the stability statement (3.13) 
into the usual L2-type stability estimate at the expense of possible algebraic 
growth, which reads 

IIVN(, t11w, = f w (* )v(x, t) dx. 
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4. Exponential time decay. Let us integrate by parts the differential equation 
(3.1) against (1 + x)u . Thanks to the homogeneous boundary condition (3.2) 
we find 

(3.19) tf(1 +X)U2(x, t)dx <?- (1+x)U2(xt)dx, 

and therefore, 

(3.20) 1l u(- t) lll+x < e-at14 11 u(*, ? ) 11 l+X. 

This estimate corresponds to the special case of the stability statement (3.13) 
for the spectral Legendre tau method (a = ,8 = 0) weighted by (3.14b). The 
exponential time decay indicated in (3.20), and more generally in (3.13), is 
due to the special choice of co-weighted stability norms. The weights {w1} N 

in (3.14a), (3.14b) involve the essential factors 1 + xj or (1 + xj)/(l - xj) 
which amplify the inflow boundary values in comparison to the outflow ones. 
Since in the current homogeneous case, vanishing inflow data is propagating 
into the domain, this results in the exponential time decay indicated in (3.20) 
and likewise in the stability statement (3.13). 

5. The inflow problem. A stability statement similar to Theorem 3.1 is 
valid in the inflow case where a < 0. Assume that the CFL condition (3.12) 
holds with 10 = t0(fi, a). Then (3.13) follows with discrete weights coj = 

(1 -xj)wj/(l +xj) or coj = (1 -xj)wj. 
The rest of this section is devoted to the proof of Theorem 3.1 according to 

the various cases outlined in the four lemmas below. We start with 

Lemma 3.2 (Stability of the spectral tau method). Consider the spectral Jacobi 
tau method (3.4). Then Theorem 3.1 holds with 

(3.21a) co3- 1-Xi wj, {w = Wj1(a, /)}j=I = Gauss-Jacobi weights, 

J~~~~~~~ 

(3.2 1b) no0-Io0( S ) = { (1 -a), a+,B >O, a , ,B E (-,1). _ &a, +fl?O, 

Proof. Squaring of (3.7a) yields 

IIVN(. tm+ 
2 2 tm)II t . a v IIVN( , tm+')11 = IIVN(., t)11+ 2At a(vN(, tm), VN( tm)) 

(3.22) + (At . a)21IV, (. tm)112 

- IIVN(.S tm)I2t + 2At * aI + (At * a)2II 

and we turn to estimate the two expressions, I and II, on the right of (3.22). 
First, let us note that since the 7rN-polynomial VN(x, tm) vanishes at the 

inflow boundary, (3.3b), we have 

(3.23) VN(X, tm) = (1 - X)P(X) for some p(x) PN-1(X) E 7rN-l 
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Also, a straightforward computation shows that 

(3.24) (w(x) _x) (1- x) = [(,B-Xa + 2) - (/B + a)x]w(x) 

> 4tow(x), IxIl < 1, 
where 10 = no0(a, ,B) is given in (3.21b). 

Now, since ((1 + x)/(1 - X))vN(X, tm)VN(X, ti) E 72N- I, the Gauss quadra- 
ture rule (2.13) implies 

N 1 +x. 
I_E Zw1 VN(Xj, tm 

)VN(Xj 
tm) 

j1 X 1 +X 

= |Ww(X)1 VN(X, tM)VN(X, tm) dx. 

We integrate by parts the right-hand side of I, substitute vN(x, tm) = (1 -x)p(x) 
from (3.23), and in view of (3.24) we obtain 

(3.25) I = (w(x) ( -x)2p2 (x)dx < -2t10oIpIu(X)1 

Next, let us consider the second expression, II, on the right of (3.22). As before, 
we substitute vN(x, tm) = (1 - x)p(x) from (3.23) and obtain 

II iv tm )ll 2 
w 
W- ( 

-Xj )p I(Xj) _p (Xj )]2 

j=1 -X 
N N 2 2 

E~~X ( )('))+2Ewjl~ XP (Xi) =III+ II2* 
j=1 j=1 1 

Since (1 - X2)(p(X))2 E 7r2N-2, the Gauss quadrature rule (2.13), followed by 
the inverse inequality (2.6), implies 

N 

EW (1_ 2)(p'(Xj))2 = 2||p'lll x2)w(X) < 2N-llllw(x)i 1 

J=1 

This, together with the obvious upper bound 
N 1 +Xj 4 2 

Il-2 E2wj1 jp (Xj) < xmn IIPII(w(x)' 

gives us 

(3.26) II< (2lN1 + x ) lIPI1W(X) 

Equipped with (3.25) and (3.26), we return to (3.22) to find 

IIVN(., tm1 )II2 

(3.27) < IIVN(, t co )IC- 2Ata [2)1o- At.a (N-1 + Ax IIPIIW(X) 
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The CFL condition (3.12) and (3.2 lb) imply that the expression in square brack- 
ets on the right is positive, 

(3.28) [ - ( -a AXmin > 

and hence strong stability holds. 
In fact, one more application of Gauss quadrature yields 

N N v2(x,m) 

IIPIIW(X) = wjp (x) = w Xj 

N 1+x. 

>Zwj 1 Ji x ((Xj tim) = IIVN(, t )IIC, 
j=1 J 

Inequalities (3.29), (3.28) together with (3.27) imply 

(3.30) IIvN(., tm+)1I2 < (1 - 21oAt * a)IIVN(, tm)II1 , 

and the result (3.13) follows. O 

Next, we take advantage of the rather general setup we employed in Lemma 
3.2. Specifically, since P(" 4)' is proportional to p(a+, f+1) (consult (2.3)), we 
may use Lemma 3.2 with i0(a, ,B) replaced by not(a + 1, , + 1) to conclude: 

Lemma 3.3 (Stability of the pseudospectral method). Consider the pseudospec- 
tral Jacobi method (3.5). Then Theorem 3.1 holds with 

1 +x. 

3tj 1 'Wj, 
(3.31a) I 

{wj = wG(a + 1, ,6 + 1)}INil = Gauss-Jacobi weights, 

(3.31b) no( /B) = -a/2 >, a, ,B E (-1,0 ). 

As mentioned before, alternative proofs of Theorem 3.1 are possible. For 
example, following [6, Theorem 5.1], one may employ a stable norm weighted 
by coj = (1 + xj)wj instead of the weights coj = (1 + xj)wj/(l - Xj) used in 
(3.2 la), (3.3 la). We begin with 

Lemma 3.4 (Stability of the spectral tau method revisited). Consider the spectral 
Jacobi tau method (3.4). Then Theorem 3.1 holds with 

(3.32a) co = (l+x)w1, {w1 = w7G(a, fi)}ijlN = Gauss-Jacobi weights, 

(3.32b) = o( { T { -a/2, a&+?+ 1>0, c /a,,e (-1,0). 
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Proof. We square (3.7a), this time using the inner product weighted by (3.32a), 

IIV(, m+l2 2mtt + . ( IIVN(,~ tM ')j1 = IIVN( , + 2At a(VN(., tm), VN(. ttm)) 

(3.3) + (At * a)21||V (., tm)|12 
= IIVN(, tm)c + 2At aI + (At a)2II, 

and as before we have to estimate the two expressions on the right of (3.33). 
The first expression, I, involves discrete summation of 

f(x) = (1 +X)vN(x, tm)vN(x, tm ), 

and since f(x) is a lr2N-polynomial, its N-node Gaussian sum is not an exact 
integral. The essential observation here is that f(2N) _ Const > 0 in this case, 
and the error estimate (2.14) tells us that the Gauss quadrature rule is upper 
bounded by 

N 

I _ Ew1(l +'XJ)VN(Xj, tm)VN(Xj, tm) 

(3.34) j=1 

< w(x)(l + x)vN(X tm)VN'(x, tm )dx. 

Let us recall that the homogeneous inflow boundary condition (3.7b) implies 

(3.35) vN(x, tm) = (1 -x)p(x) for some p(x)= PN_1(X) E 7N-1. 

Also, a straightforward computation shows 

(w(x)(1 + x))'(l - x) = [(fi - a + 1) - (a + A8 + l)x]w(x) 
(3.36) > 411ow(x), lxl < 1, 

where t0 = no(a , /1) is given in (3.32b). 
We integrate by parts the right-hand side of I, substitute (3.35), and in view 

of (3.36) we obtain 

(3.37) I= -x (w(x)(l +x))'(l - x) ) dx < -2oIPllI(l-X)W(X). 

Next, let us consider the second expression, II, on the right of (3.33). As before, 
we substitute vN(x, tm) = (1 -x)p(x) from (3.35), and Gauss quadrature yields 

N 

II= E wij(l + Xj)[( - Xj)p(Xj) -p(xj)]2 

j=1 

(3.38) = w(x)(l - x2)(l - x)(p (x))2 

- 2f w(x)(l -x2)p(x)p'(x) dx +j w(x)(l + x)p2(x) dx 

II1 + II2 + II3I 
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The inverse inequality (2.6) with weight cw(x) = (1 - x)w(x) implies 

I11= lP II(1.(-x2)(1-X)W(X) ? AN-1IIPII(1-x)w(x)' AN-1 N-1(a + 1 a3), 
and integration by parts of II2 gives 

II2 +II =|[(w(x)(l - x2 + w(x)(l + x)1p2(x) dx 

IIP2 1N l-X12 2 2 
?2 }(x) = 2Zw 1 ip (Xj) < 

2i IIPII(1X)w(X). 

Consequently, we have 

(3.39) <I < ( 
2 

i + m 
2 

(N-1 AXmin)1 1(I -X)UJ(X) 
Equipped with (3.37) and (3.39), we return to (3.33) to find 

IIVN(,~ tM1 )l2 < IIVN(, t 
2 _ 2At 

(3.40) a 2i at 2 ~1+A~) pll)() 
a [2?1o /t2 (N-1 + /\X )] IIPII(j-X)W(X) 

and the result follows along the lines of Lemma 3.2 (consult (3.27)). o 

Lemma 3.4 does not cover the pseudospectral Jacobi methods, since by (2.3) 
the corresponding Jacobi parameters a + 1, ,B + 1 ? (-1, 0) . However, the 
proof of Lemma 3.4 can be carried out in the pseudospectral case if we replace 
the Gauss quadrature rule by the Gauss-Lobatto one. We omit the almost iden- 
tical details (which are outlined for the variable-coefficient case in Theorem 6.2 
below) and state 

Lemma 3.5 (Stability of the pseudospectral method revisited). Consider the 
pseudospectral Jacobi method (3.5). Then Theorem 3.1 holds with 

4a o = (1 +xj)wj, 
(3.41 a) w{w = W>a, /3)}iN l = Gauss-Lobatto-Jacobi weights, 

(3.41b) 0 = qo(a 3) = {1a/21 + ,B + 
I > 0 a, , , E (-1, O) 

Remark. The stability asserted in Lemma 3.5 is stated in terms of the discrete 
seminorm IIvN(, t)llv 2 

= EzN21 w1(l + x1)vk(xj, t) weighted by the interior 
Gauss-Lobatto weights {w}jjN I. However, taking into account the homoge- 
neous boundary condition (3.7b) and the exactness of Gauss-Lobatto quadra- 
ture for 7r2N+1-polynomials, this amounts to 

N+1 2 1 

IIVN(, t)c =1t = X Wwx1 + Xj)v(X t) x)v(x, t) dx. 
J=0 
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4. FORWARD EULER WITH INHOMOGENEOUS INITIAL-BOUNDARY CONDITIONS 

We consider the inhomogeneous scalar hyperbolic equation 

(4.1) ut =aux+F(x, t), (x, t) E[-1, 1] x [0, x), a> 0, 

which is augmented with inhomogeneous data prescribed at the inflow boundary 

(4.2) u(l, t) = g(t), t > 0. 

Using forward Euler time-differencing, the spectral approximation of (4.1) 
reads, at the N zeros of qN(X), 

(4.3a) vN(x, t )= N(xJ, t ) + At avN(xJ,t ) + AtF(xj,t ), 

qN(Xj) = 0 

and is augmented with the boundary condition 

(4.3b) VN(1, tm) = g(tm) 

In this section, we study the stability of (4.3a), (4.3b) in the two cases of 

(4.4a) spectral Jacobi tau method: qN(x) = P ') (X), a, /3 E (-1, 1), 

and the closely related 

(4.4b) pseudospectral Jacobi method: q_(x) - A)(x), 

a, fl E (-1, 0). 

To deal with the inhomogeneity of the boundary condition (4.3b), we employ 
a device introduced in [6, ?5]. Namely, we consider the 7rN-polynomial 

qN(X) (4.5) VN(X, t) = VN(X, t)- qN(l)g(t). 

If we set 

(4.6) F(x, t) =F(x, t)+a jN(jg(t), 

then VN(x, t) satisfies the inhomogeneous equation 

(4.7a) VN(Xj, t+l) VN(Xj, tm) + At aV(x t)+AtF(xj, t), 

which is now augmented by the homogeneous boundary condition 

(4.7b) VN(l, tm) = 0. 

Theorem 3.1 together with Duhamel's principle provide us with an a priori 
estimate of IIVN(., t)jjI, in terms of the initial and the inhomogeneous data, 
IIVN(., 0)II, and IIF(*, t)ll,. Namely, if the CFL condition (3.12) holds, then 
we have 

(4.8) IIVN(' t)jIcI < e atjIIjVN(., ?O)II + E At .e-oa(t-tm)IIj(., t)II 
O<tm<t 
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Since the discrete norm 11 II@ is supported at the zeros of q1(x), where 

VN(xi, t) = VN(Xj, t), we conclude 

Theorem 4.1 (Stability of the spectral tau and pseudospectral Jacobi meth- 
ods). Consider the spectral approximation (4.3a), (4.3b) associated with the Ja- 
cobi tau method (4.4a) or the pseudospectral Jacobi method (4.4b). There exists a 
positive constant 60 = no(a, f/) > 0 independent of N, such that if thefollowing 
CFL condition holds (consult (3.12)): 

(4.9) At aQ.N-1 + A )x < o' 

then the approximation (4.3a), (4.3b) satisfies the stability estimate 

||VN(, )|e,< IIVN(. ?)11l 

+ E Ate e-joa(t-tm) 

(4.10) O<tM<t 

* [IIF(. t )11j + a IqN()ILIg(tm)I] 

Theorem 4.1 provides us with an a priori stability estimate in terms of 
the initial data, vN(., 0), the inhomogeneous data, F(., t), and the bound- 
ary data, g(t). The dependence on the boundary data involves the factor of 
llq (.)ji,/jqI(1)N , which grows linearly with N, as shown by 

Lemma 4.2. Let Iw_j}N , be the discrete weights given by either (3.32a) or 
(3.41a). Then there exists a constant independent of N such that 

(4.11) Nl ( ) < Const * N. 
IqN(1)1 

Remark. The stability estimate (4.10) together with (4.11) imply 

||VN(, t)|e < IIVN(,~ ?)1c 

(4.12) + E At -e ?10a(t-tm) . [IIF(., tm)II, + Const * 
Njg(tm) ]. 

O<tm<t 

An inequality similar to (4.12) is encountered in the stability study of finite dif- 
ference approximations to mixed initial-boundary hyperbolic systems [9]. We 
note in passing that the stability estimate (4.12) together with the usual consis- 
tency requirement guarantee the spectrally accurate convergence of the spectral 
approximation (consult [7] for the semidiscrete case). 

Proof of Lemma 4.2. We consider, for example, the spectral tau method associ- 
ated with qN(X) = P(" fl)(x) and with discrete weights Co); = (1 +xj)wG(c!, G). 
Using the Gauss and Gauss-Lobatto quadrature rules (2.13) and (2.16) in this 
order, we obtain 

IIqN(')IIc, = | W(X)(1 +x)(PN7) (x)) dx = 2w'+N('a, ,B)|P( ) ()12 
N-1 

+* lI( 
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and (4.1 1) follows in view of 

p(af) 
2 

PN 1)2 
2WL+ (a, f) , N < Const * N 

Similar arguments (which are omitted) apply to the pseudospectral approxi- 
mation associated with qN(X) = W (x) and with discrete weights oj = 

(1 +Xj)WL(a, a ). o 

5. MULTI-LEVEL AND RUNGE-KUTTA TIME-DIFFERENCING 

In the previous sections we proved the stability of spectral approximations 
which are combined with first-order accurate forward Euler time-differencing. 
In this section we extend our stability result for certain second- and third-order 
accurate multi-level and Runge-Kutta time-differencing, which were studied in 
[10, 11]. 

To this end, we view our 71N-approximate solution at time level t, v(, t), as 
an (N + 1)-dimensional column vector which is uniquely realized at the Gauss 
collocation nodes (v(x1 , t), ... ., v(xN, t), v(l, t)) 

The forward Euler time-differencing (3.7a) with homogeneous boundary con- 
ditions (3.7b), reads 

(5.1a) v(tm + At) = [I + At A aL]v(tm), a > 0, 

where L is an (N + 1) x (N + 1) matrix which accounts for the spatial spectral 
differencing together with the homogeneous boundary conditions, 

(5.1b) Lv(tM) = (v'(xl, tm), ..., v'(XN, tm), 0). 

Remark. The construction of a spectral differentiation matrix L can be accom- 
plished in one of two ways. One possibility is carried out in the physical space, 
by exact differentiation of the unique 7rN-interpolant which assumes the grid 
values v (xl, t), ... ., v(XN, t), v (1, t) at the corresponding Gauss nodes. This 
leads to full (N + 1) x (N + 1) differentiation matrices L, which are recorded 
for example in [2]. Spectral differencing in the physical space is then carried out 
by a matrix-vector multiplication at the expense of O(N 2) operations. Alter- 
natively, spectral differentiation can be accomplished in the transformed space. 
In the particular case of the Chebyshev (pseudo)spectral method, this leads 
to a factorization of the corresponding differentiation matrix L, whose matrix- 
vector multiplication can be carried out efficiently by FFTI requiring O(N log N) 
operations (consult [8, 2]). 

Theorem 3.1 tells us that if the CFL condition (3.12) holds, i.e., if 

(5.2) At.a( A 2 
X 0 \N-lI+AX I 

then I + At * aL is bounded in the co-weighted induced operator norm, 

(5.3) III + At * aLIlI < e Oa At 
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Let us consider an (s + 2)-level time differencing method of the form 

s 

v (tm + At) = Ek [I + CkAt * aL]v (t m- 

(5.4) k=OS 

Ck > 06 ek > Z9 :k 1. 
k=O 

In this case, v(tm + At) is given by a convex combination of stable forward 
Euler differencing, and we conclude 

Corollary 5.1 (Multi-level time-differencing). Assume that the following CFL 
condition holds, 

(5.5) At a (AN- + 
n 2k 

< o(,C > O, k = O, 1, ... , s. 

Then the spectral approximation (5.4) is strongly stable, and the following esti- 
mate holds: 

(5.6) IIVN(, t)JI1 ? <e-q*afIvN(t m)11,, 1 = minl?o > O. 
k C 

In [10], second- and third-order accurate multi-level time-differencing meth- 
ods of the positive type (5.4) were constructed. They take the particularly simple 
form 

(5.7) v(tm + At) = 0[I + coAt * aL]v(tm) + (1 - 0)[I + c5At aL]v(tm 5) 

with positive coefficients given in Table 1. 

TABLE 1 
Multi-level methods 

Second-order time-differencing 0 CO | C 

4-level method (s = 2) 3 2 0 

5-level method (s = 3) 8 3 0 

Third-order time-differencing 

5-level method (s 3) 16 3 12 

6-level method (s =4) 25 2 10 

7-level method (s 5) 108 5 30 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _12 5~ 3_ _ _ 177 
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Similar arguments apply for Runge-Kutta time-differencing methods. In this 
case the resulting positive-type Runge-Kutta methods take the form 

(5.8a) v(l)(tm+l) = [I+At .aL]v(tm), 

(5.8b) v(k (tm) 
I 

Okv(t ) + (1 - 6k)[' + AtaL] v( -)(t ), 

(5.8c) V(tm+l) = v(S)(tm+) 

We state 

Corollary 5.2 (Runge-Kutta time-differencing). Assume that the CFL condition 
(3.12) holds. Then the spectral approximation (5.8a-c) with 0 < ok < 1 is 
strongly stable, and the stability estimate (3.13) holds. 

In Table 2 we quote the preferred second- and third-order choices of [11]. 

TABLE 2 
Runge-Kutta methods 

Second-order time-differencing 02 03 

Two-step modified Euler (s = 2) - 

Third-order time-differencing 

Three-step method (s = 3) 3 

Remarks. 1. The above results can be extended to include nonhomogeneous 
data as well. We omit the details. 

2. In [10, 11], higher-order accurate (> 3) multi-level and Runge-Kutta time- 
differencing were constructed. In the present context (of constant-coefficient 
spectral approximations), they amount to convex combinations of the stable 
forward Euler differencing I + At * aL and its adjoint I - At * aL. The above 
argument does not cover these cases, however, since in our case the stability of 
I ? At * aL is measured by different weighted norms. 

6. SCALAR EQUATIONS WITH VARIABLE COEFFICIENTS 

We begin with 

Epilogue. When dealing with finite difference approximations which are locally 
supported, i.e., finite difference schemes whose stencils occupy a finite number 
of neighboring grid cells, each of which is of size Ax, one then encounters the 
hyperbolic CFL stability restriction 

(6.1) Atlal < Const. 



THE CFL CONDITION FOR SPECTRAL APPROXIMATIONS 583 

With this in mind, it is tempting to provide a heuristic justification for the 
stability of spectral methods, by arguing that a CFL stability restriction similar 
to (6.1) should hold. Namely, when Ax is replaced by the minimal grid size, 
AXmin = minj Ixj+I - xj1 =O(N2), then (6.1) leads to 

(6.2) At IaIN2 < Const . 

Although the final conclusion is correct (consult (3.16)), it is important to real- 
ize that this "handwaving" argument is not well founded in the case of spectral 
methods. Indeed, since the spectral stencils occupy the whole interval (-1, 1 ), 
spectral methods do not lend themselves to the stability analysis of locally sup- 
ported finite difference approximations. Of course, by the same token, this ex- 
plains the existence of unconditionally stable fully implicit (and hence globally 
supported) finite difference approximations. 

As noted earlier, our stability proof (in Theorem 3.1) shows that the CFL 
condition (6.2) is related to the following two points: 

#1. The size of the corresponding Sturm-Liouville eigenvalues, AN-1 = 

O(N). 

#2. The minimal grid size, l/Axmin = O(N . 
The second point seems to support the fact that Axmin plays an essential role in 
the CFL stability restriction for the global spectral methods, as predicted by the 
local heuristic argument outlined above. To clarify this issue, we study in this 
section the stability of spectral approximations to scalar hyperbolic equations 
with variable coefficients. The principal raison d'etre, which motivates our 
present study, is to show that our stability analysis in the constant-coefficient 
case is versatile enough to deal with certain variable-coefficient problems. 

We begin with the particular example introduced in [8], 

(6.3) Ut = -xuX, (x, t) E [-1,1] x [O, xo). 
We shall show that the CFL stability restriction in this case is related to the 
O(N2)-size of the Sturm-Liouville eigenvalues (point #1 above), but otherwise 
it is independent of the minimal grid size mentioned in point #2 above. 

Observe that (6.3) requires no augmenting boundary conditions, since both 
boundaries, x = ? 1, are outflow ones. Consequently, the various 7rN-spectral 
approximations of (6.3) with forward Euler time-differencing read 

(6.4) VN(X, t + At) = VN(XI tm )-At * XVN(XI tm)e 

We have 

Theorem 6.1 (Stability). Assume that the following CFL condition holds: 

(6.5) At .AN < 1, N = N(N + 1). 

Then the spectral approximation (6.4) is stable, and the following estimate is 
fulfilled: 
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Proof. Squaring (6.4) yields 

IIVN(, t l )II_X2 = IIVN(, tm)11 X2 -2At(vN(, tm), XV(N, tm))ix2 

(6.7) + (,At)21IXV(, ( tm)112-x2 
2 ~~~~~~2 = IIVN(, tM)II2_X2 + 2At * I + (At) II. 

Integration by parts shows that the first expression, I, equals 

I-~~~_ 1 x1x) N(x, tm) dx 
(6.8) - 

= 2IIVN(. t )11-X2-f x vN(x, tm) dx. 

Next, we write xv -- (xvN) - VN, and by the inverse inequality (2.6) the 
second expression, II, can be bounded as 

II= II(XVN(X, t 1)) IIl_X2- 2 x vN(x, tm)dx 
(6.9) 1 

< (AN -2) f x VN(x, tm) dx. 

Inserting (6.8) and (6.9) into (6.7), we end up with 

IIvN(, t )1Ii_2 < (1 +At) IIvN(, tm)IIvx2 

(6. 10) + Ah *+[(IN - 2)At -2]. x12v N(x, t) dx. 

The CFL condition (6.5) tells us that the contribution of the second term is 
negative, and the stability estimate (6.6) now follows. 0 

We now turn to discuss scalar hyperbolic equations with positive variable 
coefficients, 

(6.11) Ut = a(x)ux) 0 < a(x) < a.0) (x, t) E [11]x [O, x0), 

which are augmented with homogeneous conditions at the inflow boundary 

(6.12) u(l, t) = 0. 

We consider the pseudospectral Jacobi method collocated at the N zeros of 
pa ,x) . Using forward Euler time-differencing, the resulting approximation N+1 (xI Ui 
reads 

(6.13a) v(x, tm+l) = vN(xJ, tm)+At.a(xj)v (xj, t i), PN+I (Xa ) =0, 

together with the boundary condition 

(6.13b) vN(l, ti) = 0. 
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Arguing along the lines of Theorem 3.1, we have 

Theorem 6.2 (Stability of the pseudospectral Jacobi method with variable co- 
efficients). Consider the pseudospectral Jacobi approximation (6.13a), (6.13b). 
There exists a constant no = tO(a , fi), 

(6.14a) no =- no(a, )= 
-a/2, a 

+B+ 
1 >0 a ,,E (- I,0), 

~(+ ah c+f3+ 1?O, 
such that if the following CFL condition holds: 

(6.14b) At a NA +1 N1-xj - m<o 

then the approximation (6.1 3a), (6.1 3b) is strongly stable, i.e., there exist discrete 
weights 

w. 
Oj= (1+ X) 

(6.15a)axj 
{w = w>L, (a )}N = Gauss-Lobatto weights, 

such that 

(6.15b) ||VN(, t) |C, < IIVN(, 0)llst 

Proof. We divide (6.1 3a) by a(xj), 

1 m+1 _ 1 I A.ar M ) 
NN(X; NtX ) v ( j tm) + At *' *xj -vN(xj, t ) 

a(xj)NJ - a(xj)NJVjI 
N>' 

and, proceeding as before, we square both sides to obtain 

IIVN( tm+l )2 IIVN( tm)II| + 2At(VN(., I), vt(V , tm)) 

(6.16) + (At)2 la(.)v>.' tm) II2 

= IIVN(., tm)II* + 2At * I + (At)2* II. 

The first expression, I, involves discrete summation of the 7r2N-polynomial 
f(x) = (1 + x)vN(x, tm)V (x, tm), and since f(? 1) = 0 (in view of (6.1 3b)), 
the N-node Gauss-Lobatto quadrature rule yields 

N+1 

I _ , W (1 + Xj)VN(Xj, tm )vN(x1, tm) 
j=O 

= W(X)(1 +X)VN(X, tm)VN(x, tm)dx. 
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We integrate by parts the right-hand side of I, substitute vN(x, t') = (1 -x)p(x) 
from (3.35), and in view of (3.36) we obtain as before (compare (3.37)), 

(6.17) 1 < -21ollIP(I(lx)W(x). 
The second expression, II, gives us 

N 
II = E wja(xj)(1 + xj)[(l 

_ 
Xj)p, (Xj) _- p(Xj) 2 

j=1 
N 

(6.18) ~~< 2a. E , j 
(1 -x2) (1 _ Xj) (PI(Xj))2 

(6.18) Xi1 

N 
+ 2Ew1a(xj)(1 + Xj)p2(xj) 

j=1 

=2a,0II1 + 2 - II2 - 
The inverse inequality (2.6) with weight co(x) = (1 - x)w(x) implies 

II1 = lIP 1l(1-x2)(1-X)W(X) 'AN-llPI(l-X)W(X) AN-1 N-1(a + 

and the expression II2 can be bounded as 

II2 < max a(xj) 1_ E Wj( _ Xj)p2(Xj) 

a(xj) *. JWkIPXP1X2 

< 2. max (I)_2X)W(X) 
1<j?N 1 Xj*IPIl..)() 

Consequently, we have 

(6.19) I<2 (a A + 2. <ja<xN a(xj) 21PI12 00 N- I I<j 1 Xj (IIPII(l 

Equipped with (6.17) and (6.19) we return to (6.16) to find 

IIVN(G, +t 2N 

(6.20) < IIN(t t )IICO2At [2?o-At (aOYiNl 

+2<max1 - IIPIi(I -X)w(X)' 

and (6.15b) follows in view of the CFL condition (6.14b). o 

Notes. 1. The case a(xj) -- a = Const > 0 corresponds to the stability state- 
ment of Lemma 3.5. Similar stability statements with the appropriate weights 
which correspond to Lemmas 3.2, 3.3, and 3.4, namely, 

caj = ((1 + xj)/(1 - xj))wfG/a(xj) and coj = (1 + xj)wfG/a(xj), 
hold. These statements cover the stability of the corresponding spectral and 
pseudospectral Jacobi approximations with variable coefficients. 
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2. We should highlight the fact that the stability assertion stated in Theorem 
6.2 depends solely on the uniform bound of a(xj), but otherwise is independent 
of the smoothness of a(x). 

3. The proof of Theorem 6.2 applies mutatis mutandis to the case of variable 
coefficients with a = a(x, t) . If a(xj, t) are Cl-functions in the time variable, 
then (6.20) is replaced by 

L 
m+1 m __ _ _ IIVN(, t )IIom+l < (1 + Const.At)IIv(., tm)llm, cow = (1 +xj) (xI tm), 

and stability follows. 
4. We conclude by noting that the CFL condition (6.14b) depends on the 

quantity maxl <j<Na(xj)/(1 -xj), rather than the minimal grid size, I/'xmin, 
as in the constant-coefficient case (compare (3.12)). This amplifies our intro- 

ductory remarks at the beginning of this section, which claim that the O(N2 ) 
stability restriction is essentially due to the size of the Sturm-Liouville eigenval- 
ues, AN_1 = O(N). Indeed, the other portion of the CFL condition, requiring 

(6.21) At 2 max <(1 ) 
l<j?N 1Xj 

guarantees the resolution of waves entering through the inflow boundary x = 1 . 
In the constant-coefficient case this resolution requires time steps At of size 

1/Axmin. However, when the inflow boundary is almost characteristic, i.e., 
when a(1) 0, then the CFL condition is essentially independent of Axmin, 
for (6.21) boils down to At . 2a'(1) < to . In purely outflow cases such as (6.3), 
the time step is independent of any resolution requirement at the boundaries, 
and we are left with the CFL condition (6.5) stated in Theorem 6.1. 

ACKNOWLEDGMENT 

We thank Professor Walter Gautschi for carefully reading the first version of 
this paper and for making several helpful corrections. 

BIBLIOGRAPHY 

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, 
graphs, and mathematical tables, Government Printing Office, Washington, D.C., 1972. 

2. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. Zang, Spectral methods in fluid dynamics, 
Springer-Verlag, New York, 1988. 

3. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev 
spaces, Math. Comp. 38 (1982), 67-86. 

4. P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, 
New York, 1984. 

5. D. Gottlieb, The stability of pseudospectral Chebyshev methods, Math. Comp. 36 (1981), 
107-118. 

6. D. Gottlieb, L. Lustman, and E. Tadmor, Stability analysis of spectral methods for hyperbolic 
initial-boundary value systems, SIAM J. Numer. Anal. 24 (1987), 241-256. 



588 DAVID GOTTLIEB AND EITAN TADMOR 

7. D. Gottlieb, L. Lustman, and E. Tadmor, Convergence of spectral methods for hyperbolic 
initial-boundary value systems, SIAM J. Numer. Anal. 24 (1987), 532-537. 

8. D. Gottlieb and S. Orszag, Numerical analysis of spectral methods: Theory and applications, 
SIAM, Philadelphia, PA, 1977. 

9. B. Gustafsson, H. 0. Kreiss, and A. Sundstrom, Stability theory of difference approximations 
for mixed initial boundary value problems. II, Math. Comp. 26 (1972), 649-688. 

10. C. W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 
6 (1988), 1073-1084. 

11. C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-cap- 
turing schemes, J. Comput. Phys. 77 (1988), 439-47 1. 

12. A. H. Stroud and D. Secrest, Gaussian quadrature formulas, Prentice-Hall, Englewood Cliffs, 
N. J., 1966. 

13. G. Szego, Orthogonal polynomials, 4th ed., Amer. Math. Soc., Providence, R. I., 1975. 

(D. Gottlieb and E. Tadmor) SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY, 
TEL-AVIV 69978, ISRAEL 

(D. Gottlieb) DIVISION OF APPLIED MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE 
ISLAND 02912 

(E. Tadmor) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHI- 
GAN 48109 

E-mail address: tadmor@math.lsa.umich.edu 


